<aside> <img src="/icons/table_red.svg" alt="/icons/table_red.svg" width="40px" /> Table of Contents
</aside>
<aside> 💡
<aside> 💡
<aside> 💡
Introduction to Clustering.
Clustering Key Concepts:
Similarity Measure: The similarity between records is often measured using a distance function. The most common distance function is the Euclidean Distance.
Euclidean Distance: For two points $(x_1, y_1)$ and $(x_2, y_2)$, the Euclidean distance is calculated as:
$$ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $$
Example 1: Distance between points 3 and 8 in one dimension:
$$ \text{Distance} = |3 - 8| = 5 $$
Example 2: Distance between points (4, 3) and (2, 8):
$$ \text{Distance} = \sqrt{(2 - 4)^2 + (8 - 3)^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.39 $$
Example 3: Distance between points (-1, 2, 3) and (4, 0, -3):
$$ \text{Distance} = \sqrt{(4 - (-1))^2 + (0 - 2)^2 + (-3 - 3)^2} \\ {} \\ = \sqrt{25 + 4 + 36} \\ {} \\ = \sqrt{65} \approx 8.06 $$