<aside> <img src="/icons/table_red.svg" alt="/icons/table_red.svg" width="40px" /> Table of Contents
</aside>
<aside> 💡
<aside> 💡
<aside> 💡
Statistical Estimation: Point and Interval Estimation
Point Estimation
Point Estimator: The sample statistic used to estimate the corresponding population parameter.
Point Estimate: The specific numerical value of the sample statistic.
Population Parameter: The true value of the characteristic in the population.
Correspondence Between Sample Statistic and Population Parameter
Measure of Characteristic | Sample Statistic | Population Parameter |
---|---|---|
Mean | $\bar{x}$ | $\mu$ |
Standard Deviation | $s$ | $\sigma$ |
Proportion of Success | $\hat{p}$ | $p$ |
Example
A sample of 50 students is taken, and their average test score ($\bar{x}$) is calculated as 78. Here:
$\bar{x} = 78$ is the point estimate of the population mean $\mu$.
Interval Estimation
Definition
Formula
$$ \text{Interval Estimate} = \text{Point Estimate} \pm \text{Margin of Error} $$
Where:
Interval Estimates for Common Parameters
Population Mean:
$$ \text{Interval Estimate of Mean} = \bar{x} \pm \text{Margin of Error} $$
Population Proportion:
$$ \text{Interval Estimate of Proportion} = \hat{p} \pm \text{Margin of Error} $$
Confidence Level Table:
Confidence Level | Alpha | Alpha/2 | z alpha/2 |
---|---|---|---|
90% | 10% | 5.0% | 1.645 |
95% | 5% | 2.5% | 1.96 |
98% | 2% | 1.0% | 2.326 |
99% | 1% | 0.5% | 2.576 |
Problem 1: Interval Estimate for Population Mean
Given:
Step 1: Identify the Formula
$$ \text{Margin of Error} = z \times \frac{\sigma}{\sqrt{n}} $$
Where:
Step 2: Calculate the Standard Error
Step 3: Calculate the Margin of Error
Step 4: Compute the Interval Estimate
Result: The 95% confidence interval for the population mean is $(48.04, 51.96)$.
Problem 2: Interval Estimate for Population Proportion