<aside> <img src="/icons/table_red.svg" alt="/icons/table_red.svg" width="40px" /> Table of Contents
</aside>
<aside> 💡
Sampling Theory
Key Concepts
Parameters and statistics correspond to the same type of measurement but apply to the population and sample, respectively:
Measure of Characteristic | Population Parameter ($\mu, \sigma, p$) | Sample Statistic ($\bar{x}, s, \hat{p}$) |
---|---|---|
Mean | $\mu$ | $\bar{x}$ |
Standard Deviation | $\sigma$ | $s$ |
Proportion of Success | $p$ | $\hat{p}$ |
Example:
Example Problems
Sample Size ($n$):
$$ n = 5,000 $$
Sample Proportion ($\hat{p}$):
$$ \hat{p} = \frac{\text{Number of users who liked the changes}}{\text{Total number of surveyed users}} = \frac{3,895}{5,000} = 0.779 $$
Inference for Population Proportion ($p$): Assuming the sample is representative:
Answer: Based on the sample, approximately $77.9\%$ of all users will like the changes.