Overview of Neural Networks
<aside>
<img src="/icons/table_red.svg" alt="/icons/table_red.svg" width="40px" /> Table of Contents
</aside>
<aside>
💡
- Introduction to Neural Network
</aside>
<aside>
💡
- Artificial Neuron
</aside>
<aside>
💡
- Neural Network Architecture
</aside>
<aside>
💡
- Activation Functions
</aside>
<aside>
💡
- Perceptron Training Algorithm
</aside>
<aside>
💡
- Example: Perceptron Training
</aside>
<aside>
💡
- Multilayer Perceptron (MLP)
</aside>
Introduction to Neural Network
- Introduction to Neural Networks
- Neural networks are computational models inspired by the human brain. They are used in machine learning to model complex patterns and relationships in data. A neural network consists of interconnected layers of nodes (neurons) that process input data and produce output predictions.