Overview of Neural Networks


<aside> <img src="/icons/table_red.svg" alt="/icons/table_red.svg" width="40px" /> Table of Contents

</aside>

<aside> 💡

  1. Introduction to Neural Network </aside>

<aside> 💡

  1. Artificial Neuron </aside>

<aside> 💡

  1. Neural Network Architecture </aside>

<aside> 💡

  1. Activation Functions </aside>

<aside> 💡

  1. Perceptron Training Algorithm </aside>

<aside> 💡

  1. Example: Perceptron Training </aside>

<aside> 💡

  1. Multilayer Perceptron (MLP) </aside>

Introduction to Neural Network


  1. Introduction to Neural Networks
    1. Neural networks are computational models inspired by the human brain. They are used in machine learning to model complex patterns and relationships in data. A neural network consists of interconnected layers of nodes (neurons) that process input data and produce output predictions.