$$ \text{Class Entropy} = - \frac{7}{11} \log_2 \frac{7}{11} - \frac{4}{11} \log_2 \frac{4}{11} $$
Since scientific calculator doesn't have a direct "log base 2" function, we'll use the change of base formula again:
$$ \log_2 x = \frac{\log_{10} x}{\log_{10} 2} $$
Calculate $- \frac{7}{11} \log_2 \frac{7}{11}$:
First, divide $7$ by $11$:
$$ \frac{7}{11} = 0.63636 $$
Find $\log_{10} 0.63636$:
$$ \log_{10} 0.63636 \approx -0.1959 $$
Find $\log_{10} 2$:
$$ \log_{10} 2 \approx 0.3010 $$
Calculate $\log_2 \frac{7}{11}$:
$$ \frac{-0.1959}{0.3010} \approx -0.6507 $$
Multiply $\frac{7}{11}$ by $\log_2 \frac{7}{11}$:
$$ \frac{7}{11} \times -0.6507 \approx -0.4140 $$
Apply the negative sign:
$$ -(-0.4140) = 0.4140 $$
Calculate $- \frac{4}{11} \log_2 \frac{4}{11}$:
Divide $4$ by $11$:
$$ \frac{4}{11} = 0.36363 $$
Find $\log_{10} 0.36363$:
$$ \log_{10} 0.36363 \approx -0.4393 $$
Calculate $\log_2 \frac{4}{11}$:
$$ \frac{-0.4393}{0.3010} \approx -1.4598 $$
Multiply $\frac{4}{11}$ by $\log_2 \frac{4}{11}$:
$$ \frac{4}{11} \times -1.4598 \approx -0.5308 $$
Apply the negative sign:
$$ -(-0.5308) = 0.5308 $$
Add the results together:
Add $0.4140$ and $0.5308$:
$$ 0.4140 + 0.5308 = 0.9448 $$
Final Answer: